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We investigate the magnetic behavior of nuclear spins embedded in a two-dimensional (2D) interacting
electron gas using a Kondo lattice model description. We derive an effective magnetic Hamiltonian for the
nuclear spins, which is of the Rudermann-Kittel-Kasuya-Yosida type and where the interactions between the
nuclear spins are strongly modified by the electron-electron interactions. We show that the nuclear magnetic
ordering at finite temperature relies on the (anomalous) behavior of the 2D static electron spin susceptibility
and thus provides a connection between low-dimensional magnetism and nonanalyticities in interacting 2D
electron systems. Using various perturbative and nonperturbative approximation schemes in order to establish
the general shape of the electron spin susceptibility as a function of its wave vector, we show that the nuclear
spins locally order ferromagnetically and that this ordering can become global in certain regimes of interest.
We demonstrate that the associated Curie temperature for the nuclear system increases with the electron-

electron interactions up to the millikelvin range.
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I. INTRODUCTION

In the past decade, the field of spintronics has seen re-
markable progress.'~> Among them, the possibility of confin-
ing electron spins in quantum dots opens the door to quan-
tum spintronics. This is based on the possibility of
controlling and manipulating single electron spins in order to
build devices able to achieve operations for quantum infor-
mation processing. The most promising and challenging idea
is the use of spins of confined electrons in quantum dots to
realize quantum bits.* Within the last years, all the necessary
requirements for spin-based quantum computation have been
realized experimentally, going from the coherent exchange of
two electron spins in a double dot® to the coherent control of
a single electron spin, including the observation of Rabi
oscillations.® These achievements have become possible be-
cause electron spins in semiconductor quantum dots are rela-
tively weakly coupled to their environment and are therefore
long lived quantities, quite robust against decay. Indeed, lon-
gitudinal relaxation times in these systems have been mea-
sured to be of the order of 15.”% A lower bound on the spin
decoherence time for an ensemble of electron spins in GaAs
quantum dots has been measured to be typically larger than
100 ns,'® while a coherence time in a single quantum dot
exceeding 1 us has been recently achieved using spin-echo
techniques.’ It is by now well established that one of the
major sources of decoherence for a single electron spin con-
fined in a quantum dot is the contact hyperfine interaction
with the surrounding lattice nuclear spins.'!

One possibility to lift this source of decoherence is the
development of quantum control techniques, which effec-
tively lessen or even suppress the nuclear spin coupling to
the electron spin.>'>!3 Another possibility is to narrow the
nuclear spin distribution'*'® or dynamically polarize the
nuclear spins.!"1417-19 However, in order to extend the spin
decay time by 1 order of magnitude through polarization of
the nuclear spins, a polarization of above 99% is required,'*
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quite far from the best result so far reached in quantum dots,
which is around 60%.' A common point to the aforemen-
tioned approaches is their aim at mitigating nuclear spin fluc-
tuations by external actions. Recently, the possibility was
raised of an intrinsic polarization of nuclear spins at finite
but low temperature in the two-dimensional electron gas
(2DEG) confined by the GaAs heterostructure.’”

The nuclear spins within the 2DEG interact mainly via the
Rudermann-Kittel-Kasuya-Yosida (RKKY) interaction,’!
which is mediated by the conduction electrons (the direct
dipolar interactions between the nuclear spins are much
weaker, see below). An intrinsic nuclear spin polarization
relies on the existence of a temperature dependent magnetic
phase transition, at which a ferromagnetic ordering sets in,
thus defining a nuclear spin Curie temperature.

The first estimate of such a Curie temperature was ob-
tained for three-dimensional (3D) metallic samples, using a
Weiss mean field treatment by Frohlich and Nabarro more
than 60 years ago.?? They determined the nuclear spin Curie
temperature to be in the microkelvin range or less for 3D
metals. A Weiss mean field treatment also gives a nuclear
spin Curie temperature 7 in the microkelvin range for a
typical 2DEG made from GaAs heterostructures;? yet, a
more detailed analysis is desirable for at least two reasons.
First, a Weiss mean field analysis does not properly take into
account the dimensionality of the system. Second, it ignores
electron-electron (e-e) interactions. In two dimensions, the
Mermin-Wagner theorem?? states that there is no phase tran-
sition at finite temperature for spin systems with Heisenberg
(isotropic) interactions, provided that the interactions are
short ranged enough. However, RKKY interactions are long
ranged and, strictly speaking, the Mermin-Wagner theorem
does not apply, although a conjecture extending the Mermin-
Wagner theorem for RKKY interactions due to noninteract-
ing electron systems has been recently formulated (and
proven in some particular cases).?*

In Ref. 20, we started from a Kondo lattice description for
the system composed of nuclear spins and electrons, then
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derived a rather general effective Hamiltonian for nuclear
spins after integrating out electron degrees of freedom, and
finally performed a spin wave analysis around a ferromag-
netic ground state (which we assumed to be the lowest en-
ergy state). We indeed showed that T-=0 for noninteracting
electrons in agreement with the latter conjecture. However,
taking into account e-e interactions changed drastically this
conclusion. It turns out that e-e interactions modify the long-
range nature of the two-dimensional (2D) RKKY interactions
(which are directly related here to the static electron spin
susceptibility) and thereby allow some ordering of the
nuclear spins at finite temperature.’® Furthermore, we
showed that the temperature scale at which this ordering
takes place is enhanced by e-e interactions.?”

The study of thermodynamic quantities in interacting
electron liquids (especially in two dimensions) has attracted
some theoretical>>3* and experimental® interest recently
with the goal to find deviations from the standard Landau-
Fermi liquid behavior. It is therefore quite remarkable that
the macroscopic magnetic properties of nuclear spins in a
2DEG, and thus their finite temperature ordering, are directly
related to the corrections to the the static electron spin sus-
ceptibility induced by e-e interactions. They may therefore
be associated with an indirect signature of Fermi liquid
nonanalyticities. Nevertheless, it turns out that the tempera-
ture dependence of the electron spin susceptibility x,(7) is
rather intricate. On the one hand, from perturbative calcula-
tions in second order in the short-ranged interaction strength,
one obtains that |x,(7)| increases with temperature.”®-3! A
recently developed effective supersymmetric theory, which
takes into account renormalization effects, reproduces this
behavior and also allows us to determine subleading loga-
rithmic corrections.’> These subleading logarithmic correc-
tions have also been found by a direct diagrammatic ap-
proach, taking into account renormalization -effects.3334
When these corrections are important, they lead to a non-
monotonic behavior of |x,(7)|, which first decreases with
temperature.’3* This latter behavior is in agreement with
recent experiments on 2DEGs.?

In view of these recent results, we want to reconsider the
question of a finite temperature ordering of nuclear spins by
taking into account renormalization effects of the static spin
susceptibility x,(¢), where ¢ is the wave vector, and there-
fore going beyond Ref. 20. It turns out that, a priori, differ-
ent nuclear spin orderings can occur, depending on tempera-
ture and other sample parameters such as the interaction
strength, measured by the dimensionless parameter r, (essen-
tially, the ratio between Coulomb and kinetic energies of the
electrons). We consider at least two possible ordered phases
in the nuclear system: a ferromagnetic ordering®® and a heli-
cal spin ordering where the nuclear spins align ferromagneti-
cally at the scale of the nuclear lattice constant but point in
opposite directions at the scale of the Fermi wavelength
(roughly 2 orders of magnitude larger than the nuclear lattice
spacing at small r;=<1). Depending on the general nonper-
turbative shape of y,(¢) (which may have a complex depen-
dence on T and r,), we discuss the possible ordered phases
and their associated magnetic properties.

The outline of the paper is as follows: In Sec. II, we
formulate a Kondo lattice description of our problem where
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the nuclear spins are playing a role analogous to magnetic
impurities embedded in an electron liquid. We then derive a
general effective magnetic Hamiltonian for nuclear spins
where the interaction is controlled by the electron spin sus-
ceptibility in two dimensions. In Sec. IIl, we calculate the
electron spin susceptibility in an interacting 2DEG using
various approximation schemes for both short-ranged and
long-ranged interactions. Particular attention is paid to renor-
malization effects in the Cooper channel, which turn out to
be important. Section IV is devoted to the magnetic proper-
ties of the nuclear spins depending on the general wave-
vector dependence of the electron spin susceptibility. We dis-
cuss two different phases: a ferromagnetic phase and a
helical phase with a period of the order of the electron Fermi
wavelength. Finally, Sec. V contains a summary of our main
results and also perspectives. The Appendix contains some
details of the derivation of the effective nuclear spin Hamil-
tonian and of the reduction to a strictly 2D problem.

II. MODEL HAMILTONIAN

A. Kondo lattice description

In order to study an interacting electron gas coupled to
nuclear spins within the 2DEG, we adopt a tight-binding
representation in which each lattice site contains a single
nuclear spin and electrons can hop between neighboring
sites. A general Hamiltonian describing such a system reads

Nz
H=H,+ ZAJ S I+Eu“'31“1'3
=Hy+H,+Hy, (1)

where H,, denotes the conduction electron Hamiltonian, H,
the electron-nuclear spin hyperfine interaction, and H,, the
general dipolar interaction between the nuclear spins. H, can
be rather general and includes electron-electron (e-e) inter-
actions. In Eq. (1), cj-g creates an electron at the lattice site r;
with spin =7, |, and 7 represents the Pauli matrices. We
have also introduced I j=(1x,lj ,I;) the nuclear spin located at
the lattice site r;, and Aj, the hyperfine coupling constant
between the electron and the nuclear spin at site r;. Summa-
tion over the spin components «,3=x,y,z is 1mphed The
electron spin operator at site r; is defined by §;
—ﬁc +Too'Cjor (for convenience, we normalize the spin op-
erator here to 1). N; denotes the total number of lattice sites.
From here on, we assume that A j=A>O, which means we
assume that the hyperfine interaction is antiferromagnetic
and the same for all atoms that constitute the heterostructures
(typically Ga and As and their isotopes).

The nuclear spins are also coupled via the dipolar inter-
action to other nuclear spins, which are not embedded in the
2DEG. Taking into account this interaction as well makes the
problem of the magnetism of nuclear spins in GaAs hetero-
structures an a priori 3D tremendously complicated one.
Nevertheless, it turns out that the dipolar interaction energy
scale E,; is the smallest one. It has been estimated to be
E,;~ 100 nK.*7 In particular, kzT> E,;, where T is the tem-
perature of a typical experiment. In the rest of the paper, we

045108-2



MAGNETIC ORDERING OF NUCLEAR SPINS IN AN...

neglect all direct dipolar interactions between the nuclear
spins, which are in general smaller than the indirect interac-
tion, as we will see. Therefore, we assume that v}; *F~() in Eq.
(1). This assumption is important since it allows us to focus
only on those nuclear spins that lie within the support of the
electron envelope wave function (in growth direction).

The general Hamiltonian in Eq. (1) is the well-known
Kondo lattice Hamiltonian (KLH), though H,, also contains
e-e interactions. The KLH is one of the most studied models
in condensed matter theory due to its large variety of appli-
cations. The KLH has been used to describe the properties of
transition metal oxides,*® heavy fermion compounds,3*
more recently, also magnetic semiconductors (or semimetals)
in the series of rare earth substances,*! and diluted magnetic
semiconductors such as Ga,_,Mn,As,*>* to list only a few.
The nuclear spins play a role analogous to magnetic impuri-
ties in the Kondo lattice problem. The regime in which we
are interested corresponds to the weak Kondo coupling re-
gime in the sense that A < Ey, where Ef is the Fermi energy.
Furthermore, the nuclear spin density n; is far larger than the
electron density n,. It is worth noticing that the single
nuclear spin Kondo temperature Tx= D exp(—Ey/A) (with D
being the electron bandwidth) is extremely small compared
to all other energy scales. We are therefore far away from the
so-called controversial exhaustion regime** where the indi-
vidual screening of the impurity competes with an indirect
magnetic exchange between the nuclear spins.

In this low electron density regime, the ground state of the
magnetic system (here, the nuclear spins) has been shown to
be ordered ferromagnetically in three dimensions using vari-
ous treatments that go beyond mean field theory and which
notably include spin wave modes (but neglect e-e

interactions).>®

B. Derivation of an effective magnetic Hamiltonian

We first go to Fourier space and rewrite H, in Eq. (1) as

H,= 2NZ%S 1, @)

where I;=2 Je’q /I; and Sq=2Xe” iq "iS; are the Fourier trans-

forms of I; and S;, respectively. (From now on, we set 7%
=1.) Since A is a small energy scale in our case, we can
perform a Schrieffer-Wolff (SW) transformation in order to
eliminate terms linear in A, followed by integrating out the
electron degrees of freedom. Furthermore, we can reduce our
initial 3D model to a genuine 2D problem. The main steps of
these calculations are given in the Appendix. We are left with
an effective Hamiltonian H g for the nuclear spins in a 2D
plane,

eff—— 2 IXap( @17, 3)

where
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is a general 2D electron spin susceptibility tensor, x,s(q)
=Xap(q,0=0) and g=|q|. N is the number of lattice sites in
the 2D plane and a denotes the lattice spacing for nuclear
spins. Note that (- --) means average over electron degrees of
freedom only. We have normalized y such that it coincides
with the density-density Lindhard function (see below) in the
isotropic and noninteracting limit.

The only assumptions we make are time reversal symme-
try of Hy, as well as translational and rotational invariance.
The effective Hamiltonian in Eq. (3) is therefore quite gen-
eral and does not depend on the dimensionality of the sys-
tem. Note that Eq. (3) is also valid when electron-electron
interactions are taken into account. It is worth emphasizing
that the SW transformation neglects retardation effects. This
is appropriate since the the nuclear spin dynamics is slow
compared to the electron one (in terms of energy scales, this
is related to the fact that A <<Ey). Therefore, electrons see an
almost static nuclear spin background, and the adiabatic ap-
proximation (for the conduction electrons) is well justified.
In the case of ferromagnetic semiconductors, such an ap-
proximation breaks down and retardation effects must be
taken into account.¥ If we also assume spin isotropy in the
2DEG, then Xaﬁ(q w—0)= Bxé(q) where x,(g) is the iso-
tropic electron spin susceptibility in the static limit.

In real space, the effective nuclear spin Hamiltonian reads

1 149 (44
Hep=— 52 TP, (5)

where
TP == (A%4n) xap(Ir]) (6)

is the effective exchange coupling. The nuclear spins I, are
therefore interacting with each other, this interaction being
mediated by the conduction electrons. This is just the stan-
dard RKKY interaction,2! which, however, as we shall see,
can be substantially modified by electron-electron interac-
tions compared to the free electron case.

III. ELECTRON SPIN SUSCEPTIBILITY IN A TWO-
DIMENSIONAL INTERACTING ELECTRON GAS

The main result of the previous section is that the mag-
netic exchange interaction between the nuclear spins is me-
diated by the electron gas. Therefore, the key quantity gov-
erning the magnetic properties of the nuclear spins is the
electron spin susceptibility y,(q) in two dimensions. The cal-
culation of this quantity in an interacting 2DEG has been the
subject of intense efforts in the past decade in connection
with nonanalyticities in the Fermi liquid theory.”=3* On a
more fundamental level, incorporating e-e interactions in the
calculations of thermodynamic quantities has been an impor-
tant area of condensed matter theory over the past 50 years.
In particular, the study of nonanalytic behavior of thermody-
namic quantities and susceptibilities in electron liquids has
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attracted recent interest, especially in two dimensions.>>—3*

Of particular importance for the following is the recent find-
ings by Chubukov and Maslov,”? namely, that the static non-
uniform spin susceptibility x,(g) depends linearly on the
wave vector modulus g=|q| for ¢g<k; in two dimensions
(while it is ¢ in three dimensions), with kz the Fermi mo-
mentum. This nonanalyticity arises from the long-range cor-
relations between quasiparticles mediated by virtual particle-
hole pairs, despite the fact that e-e interactions was assumed
to be short ranged.

Let us first recall the case of noninteracting electrons. In
this case, y, coincides with the usual density-density (or
Lindhard) response function y;,*

Xi(g) = 5 3 Tk 7)
Na k(rEkU 6k+q17+ 77

where ny is the electron number operator, €, the dispersion
relation, and 7>0 an infinitesimal regularization parameter.
This Lindhard function can be evaluated exactly and reads as
follows in two dimensions:*®

2
Vg~ — 4k

(8)

—
xi(q) = ) ,

_Ne<l _®(C]_2kp)

where N,=n,/ EF is the electron density of states (per spin).
Note that N,=m /7T where m” is the effective electron mass
in a 2DEG. It follows from Eq. (8) that

oxr(q) = x1(q) = x.(0) =0 for g < 2kp. 9

Let us now include electron-electron interactions. It is
convenient to introduce a relativistic notation, with p
=(py,p) being the (D+1) momentum where p, denotes the
frequency and p the D-dimensional wave vector (here D=2).
In a zero-temperature formalism, the susceptibility can be
written diagrammatically*®

_ i b= - o _
XY(Q) == ﬁ E o0 G(r(pl - q/z)G(r(pl + q/z)Aﬁlmr’(q)v

pr.o.o’

(10)

with o,0’ =+, and where L=aN"P is the system length,
G,(p,) is the exact single-particle Green’s function, and
A(g) is the exact vertex function, which can be expressed in
terms of the exact scattering amplitude I'(7) as follows:*®

Aﬁlcro”(Q) = 50'0'

[ ooo’ o' [ = — — = —
= 52 U5 @Gy (P2 + TG (2= 12).
P2

(11)

This scattering amplitude plays a crucial role, as we will see
next. I' is, for a general scattering event, a function of four
spin variables: o, o-[, 0y, and a’é. Nevertheless, one can use
a convenient parametrization that ensures rotational spin
invariance,*°
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1—10']0'10'20'2( F+

+I .
1202 I’]l’z(s” 015”2” 7 7

’
pl pz (Tl(T] (7‘20’2’

(12)

where 7 is a vector whose components are the Pauli matrices
(7, 7,7) and T, To\0| Toya), =3 .7 ,. Note that T'* is

a—xyz 010, 0,0,
spin independent and corresponds to the 2charge and spin
channels, respectively. Following Ref. 46, we next write the
Bethe-Salpeter (BS) equation for I'~ (corresponding to the
spin channel) as follows:

53 (055 DR @, @,

I5,5,@ = Tin)p (@ + 75 >

(13)

where (I';)55(q) is the exact irreducible electron-hole scat-
tering amplitude in the spin channel, and
Ry(q)=-2iG(p+q/2)G(p - q/2) (14)
is the electron-hole bubble.*’
One can exactly solve, at least formally, the BS equation

[Eq. (13)] using a matrix notation where the matrix indices
run over p. Within this notation, R is a diagonal matrix. We

find that
1
—> (15)
1-Ti(@R(G) ) 5,

I 5= E (Ti)p, (
?"
This enables us to derive an exact and closed expression for
the spin susceptibility, given by

L (R(q)

Xs(q) = 1P ~
p.p

1

—_— . 1
- F;I@R(q—))p,,, 1o

In general, I';, cannot be calculated exactly, and some
approximations are required. The approximation we use in
the following consists in replacing the exact irreducible
electron-hole scattering amplitude (I';,)55 by an averaged
value calculated with respect to all possible values of p and
p' near the Fermi surface. This is equivalent to the following
approximation:

(F;T)ﬁ,ﬁ/(é) ~TI (@ Vp.p'. (17)

We now assume ¢y=0 and suppress the g, argument in
what follows since we are interested in the static properties
of the spin susceptibility.

A. Short-ranged interaction

In this section, we consider a g-independent short-ranged
interaction potential, which corresponds within our notations
to I";,.(¢)=-U. This approximation considerably simplifies
the BS equation [Eq. (13)] and the formal expression of y, in
Eq. (16). The derivative of x,(q) with respect to g can be
expressed in a simple compact form,
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%( )_&H(q) 1
o VT oq [1+UI(g)]”

(18)

where I1(q)=2:R5(¢)/L". In the low g <<k limit, one can
approximate the term I1(g) in the denominator of Eq. (18) by
its noninteracting value y;(0)=-N.,.

The multiplicative factor 1/(1-UN,)? in Eq. (18) signals
the onset of the ferromagnetic Stoner instability when UN,
approaches unity. The Stoner instability is supposed to occur
for very large r,~ 20 according to Monte Carlo results.*® For
smaller r,=<10, we are still far from the Stoner instability.
Though this multiplicative term does not play a significant
role at small 7, it increases with r,, showing the tendency.

1. Perturbative calculation

The corrections to the polarization bubble I1(g) are domi-
nated by the first bubble correction to the self-energy of
G,(p).” These corrections have been calculated in second
order in U in the small ¢ limit in Ref. 29, with the result

[T (m)*
3mkp

oll(g) =1(g) - T1(0) = — 4qxs ; (19)

where xs=|x,(0)| and T'(m) ~=Um" /4 is the (2k;) back-
scattering amplitude. When UN,<1, we recover from Eq.
(18) the known result Sy,(q)=6l1(g).? This perturbative cal-
culation therefore gives Sy (¢)=aq, with <0, or, equiva-
lently, |x,(q)| increases with g at low ¢.’® Finite temperature
calculations along the same line imply that dy,(T)=yT, with
y<0.303! This result has been confirmed by using a super-
symmetric effective theory of interacting spin excitations.3?

On the other hand, recent experiments on a low density
interacting electron gas in silicon metal oxide semiconductor
field effect transistors (MOSFETs) have found that |y,(7)|
decreases at low temperature,® in apparent contradiction
with perturbative calculations. This rather puzzling situation
demands a nonperturbative approach.

2. Beyond lowest order perturbation theory:
Renormalization effects

The previous calculations give a spin susceptibility, which
is quadratic in the backscattering amplitude. However, it is
known that at low enough energy, the backscattering ampli-
tude becomes renormalized. One should therefore instead
consider some type of renormalized perturbation theory ap-
proximation (RPTA). Shekhter and Finkel’stein®® argued re-
cently that the strong renormalization of the scattering am-
plitude in the Cooper channel may explain the sign of Sy,(T)
in the experiment by Prus et al.?®

Let us introduce I'(0,7), the two-particle scattering am-
plitude at a particular scattering angle 6 and temperature 7.
The Cooper channel corresponds to §=1r, and we denote by
I'(T)=I'(7,T) the corresponding two-particle scattering am-
plitude. In the Cooper channel, the two particles that scatter
have exactly opposite momenta. We first expand I',. in Fou-
rier harmonics such that
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T(T) =2 (- )'T(T), (20)

where n is an integer representing the angular momentum
quantum.

In order to analyze the temperature dependence of I, (T),
it is enough to write the BS equation for I', in a way fully
analogous to Eq. (13). In the Cooper channel, due to the fact
that the momentum of the center of motion of the two scat-
tering particles is zero, the integration over the electron-hole
bubble gives rise to logarithmic infrared (IR) divergences.
These divergences are due to particle-hole excitations around
the Fermi sea and already occur in the ladder approximation
(i.e., by considering only the bare short-ranged interaction
potential in the BS equation). We refer the reader to Refs. 49
and 33 for more details. The logarithmic IR divergences can
be absorbed by a rescaling of the scattering amplitudes in the
Cooper channel such that

1—‘C 1
: . (21)
1+ T, In(Ep/kgT)

Fc,n(T) =

where I'. ,=I", ,(Ep) is the bare value. The logarithmic fac-
tors give rise to the well known Cooper instability.’*>! They
are just the 2D equivalent of the one found in the discussion
of Kohn-Luttinger superconductivity.’? In Eq. (21), the loga-
rithmic divergence is cut off by the temperature at low en-
ergy.

Another way of recovering Eq. (21) is to regard the back-
scattering amplitudes I'.,, as some energy scale dependent
coupling constants I'. ,(A) of the 2DEG [A is some running
energy scale, the equivalent of T in Eq. (21)]. The next step
is to write renormalization group (RG) equations for these
couplings. These couplings are marginal, and the RG equa-
tions at the lowest order read

dar
—_on r 2_ 22
dIn(A/Ey) Ten) 22)

The solutions of the RG equations for I'. ,(A) are given by
Eq. (21), where, essentially, T is replaced by A.3

The low-energy behavior of the I, ,(7) strongly depends
on the bare scattering amplitudes being repulsive (I, ,>0)
or attractive (I'.,<0). From Eq. (21), we immediately infer
that when I'.,>0, I'_,(T)—0 at low energy/temperature.
On the other hand, when I, , <0, I, ,,(T) renormalizes to the
strong coupling regime. Assuming that there exists at least
one harmonic 7, such that l"c’n0< 0 implies that there exists a
temperature below which the scattering in the Cooper chan-
nel is entirely dominated by T’ , .**

This reasoning relies on the fact that at least one bare
scattering amplitude in the nth harmonic is negative. This
assumption can be further substantiated with some explicit
perturbative calculations of the irreducible scattering
amplitudes.>>* By computing the lowest order corrections
contributing to the irreducible scattering amplitude I';,
[therefore going beyond the ladder approximation in the BS
equation, which leads to Eq. (21)], one can actually prove
that there exist higher harmonics such that I',.,, <0.%
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Note that these calculations imply that a superconduct-
ing instability should develop at a temperature T=<T}
=Epexp(-1/[T,,, |)/ks. This is entirely analogous to the
Kohn-Luttinger mechanism for superconductivity.’>3 Nev-
ertheless, in a typical 2DEG, disorder or some other mecha-
nism may provide a natural infrared cutoff preventing this
superconducting instability to be reached. Let us call A
> T, this infrared cutoff. It is worth noting that A should not
be too large either in order to let Fwo flow to relative large
values of order 1 for this mechanism to be relevant.

As shown in Ref. 33, this mechanism, if it takes place,
leads to a nonmonotonic behavior of the temperature depen-
dence of the electron spin susceptibility and more specifi-
cally to the existence of a scale T\, below which % >0 [note
that we use a different sign convention for y,(0) compared to
Ref. 33]. By fitting the experimental data of Prus er al. with
such a theory, the estimate Fc’n0~0.25—0.3 was obtained in
Ref. 33, which implies T~ 10 K, a surprisingly large tem-
perature scale of the order of Er~40 K in this experiment. It
is worth emphasizing that such a scale, being dependent on
the bare value of Fc,no, is nonuniversal and therefore sample
dependent.

This RPTA also raises a similar issue concerning the be-
havior of the electrostatic spin susceptibility x,(¢) and, more
specifically, of I'.(¢). Following Ref. 49, one can write a BS
equation at zero temperature for I' (&), where & is an energy
scale in the vicinity of the Fermi energy Er. By linearizing &

around E such that é=vrg, one immediately infers from Eq.
(21) that

Fc,n . Fc,n
1 + FC,I‘L ln(EF/UFq) 1 + FC,I‘I ln(kF/Zq) '

Fc,n(q) =
(23)

Note that at finite temperature and for a realistic system, the
infrared cutoff A is replaced by max{v zq,kzT,A}. This result
is also obtained from a renormalization group approach by
working directly in momentum space at low energy where
the energy can be linearized around ky. At low enough mo-
mentum, I'.(6,q) is dominated by the harmonic 7, such that

- |Fc,n0|

1- |Fc,n0|1n(kF/2q) ’

Fg) = (=1)" (24)

By replacing the bare value of the scattering amplitude in Eq.
(19) by the renormalized one, we find that Sy,(q)=

[T(mq)l? . .
—4qNgW also acquires a nontrivial ¢ dependence. In par-

ticular, using Eq. (24), we obtain that

d 4N,
R (] ¥
dq 37ky '

), (25)

which is positive when [T .(g)|>1/2.

Let us assume that A, the aforementioned infrared cutoff,
is close to the Cooper instability, i.e., kzgT; <A. In such a
case, the flow of I',(g) in Eq. (24) is cut off by A. Using
l/Fc,nO:ln(E plkgT;), one obtains that
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(_ 1)n0+1
r,= A for g < Alvg (26)
ln<—>

kpT},

is renormalized toward large values. This implies that there
exists a gy~ 10q; (where q;=kzT;/vy) such that ﬁé){s(q)
>0, Vg<gqo, and ﬁéx‘y(q) <0 when g = q,.

We must point out that the RG equation in Eq. (25) as-
sumes that all other scattering amplitudes I',, for n# n; can
be neglected below some low energy. In order to go beyond
this approximation, one has to solve (numerically) a set of
RG differential equations instead.

This scenario relies on a fine tuning of A compared to
kgT; (typically, this demands T, < A/kz<10T,). If this con-
dition is not met, one may then expect Sy,(¢) <0 in accor-
dance with lowest order perturbative calculations. Neverthe-
less, one should mention that an alternative theory, also
giving Sx,(T)>0 at low T, has been put forward.** This
alternative scenario applies for vanishing Cooper amplitudes.
In such a case, the anomalous temperature dependence of the
spin susceptibility is dominated by nonanalytic contributions
from particle-hole rescattering with small momentum
transfer.3* Whether such a scenario, not considered here, also
implies that Sy,(¢) >0 is an interesting but open question.

The aforementioned considerations immediately raise the
issue about the amplitude of g, in a typical interacting
2DEG. In order to describe the temperature dependence of
X;(T), Shekhter and Finkel’stein determined I, such that the
experimental behavior of Ref. 35 is reproduced. This fixes
the value of this parameter and also the scale kzT, to the
order of Er. One may therefore expect g, to be of the order
of k. for a similar 2DEG. Another independent way of sub-
stantiating these estimates is to go beyond the ladder ap-
proximation in the BS equation.*’ First, as we mentioned
before, this allows one to show that there exists a value n at
which FC,,,O<O. Second, this can give us an estimate for 7},
and therefore for g,. Indeed, in Ref. 49 the Cooper instability
has been estimated to set in at the temperature kg7

~ Epe1EA(O where &~ A plays the role of the infrared
cutoff in Ref. 49, and the condition £&/Er-<<1 was assumed.
Consistency requires that 7; ~ A~ E at large r,, implying
qo~ kp. This is in agreement with our previous estimate.
The previous calculations also give us information about
the possible shapes for y,(¢). When renormalization in the
Cooper channel is important, we obtain at least one extre-
mum around some wave vector gy~ O(ky). Furthermore, at
large g, we should recover the noninteracting behavior and
therefore x,(¢) ~ x.(q) —0 for g—oo. Because x,(qo) <O,
we expect another extremum around a value g, > ¢q,. Since
the noninteracting behavior is recovered for ¢>2kp, one
may suspect g; ~ O(2kg). From the previous considerations,
we therefore conclude that there exist (at least) two extrema
for the electron spin susceptibility x,(q). It is worth empha-
sizing that this double-extremum structure is a direct conse-
quence of the nontrivial renormalization of the scattering
amplitude in the Cooper channel. We have schematically
drawn in Fig. 1 the possible qualitative shapes denoted by (a)
and (b) of x,(¢)=x,(q)/|x,(0)| as a function of g/k; and
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FIG. 1. Three possible qualitative shapes denoted by (a), (b),
and (c) for the normalized susceptibility ¥,(q)=x,(¢)/|x;(0)| as a
function of ¢/kp (dashed lines) compared to the noninteracting
value (thin full line). Here, go and ¢, are the positions of the ex-
trema for curves (a) and (b). In contrast, the local field factor ap-
proximation discussed in Sec. III B results in a monotonic increase
of x,(¢) (not sketched in the figure), being always larger than the
noninteracting value.

compared it to the (normalized) noninteracting x;(q)/N, at
T=0. In the case denoted by (a), we choose x,(¢2) > x,(0),
whereas in the case denoted by (b), the absolute value of the
susceptibility at g, =2k, is chosen to exceed the static value,
i.e., xs(q2) <x,(0). The previous considerations do not allow
us to discriminate between these two possible shapes of
X;(q). Furthermore, by increasing r,, x, can evolve from one
shape to another.

On the other hand, if the renormalization in the Cooper
channel does not take place, e.g., when it is cut off by dis-
order, then the perturbative calculations at the lowest order
apply and give instead Sy,(¢) <O at low ¢.>*3! A possible
shape for x,(q), consistent with these calculations, has been
drawn in Fig. 1 and corresponds to label (c). We should note,
however, that the effect of rescattering of a pair of quasipar-
ticles in all different channels* should be carefully examined
and may still lead to shapes (a) or (b) in Fig. 1.

B. Long-ranged Coulomb interactions
In the preceding section, we replaced 17;,(¢) by an almost
g-independent constant operator, assuming that the Coulomb
interaction was screened and, therefore, short ranged. Let us
consider in this section the bare 2D Coulomb interaction,
V(g)=2e*/ q, where e is the electron charge.

1. Local field factor approximation

One of the most successful approximations for the calcu-
lation of electron response functions is the local field factor
approximation (LFFA). It improves the random phase
approximation*® for which the effective field seen by an elec-
tron is the field that would be seen by a classical test charge
embedded in the electron gas. The idea of the LFFA to cor-
rect the random phase approximation and to better account
for the correlations existing in the electron gas is to replace
the average electrostatic potential by a local field effective
potential seen by an electron with spin o, which is part of the
2DEG. (We refer to Ref. 46 for a review). The local field
factor G_ can be defined as follows:
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G V() =x;"@ - x.'(9). (27)

Equivalently, the static spin susceptibility y, can be written
as

x.(q)
1+ V()G (q)x.(q)

The precise determination of G_(g) for all ¢ is an open prob-
lem. However, the asymptotic regimes, particularly the g
—0 limit, are quite well established because they are
strongly constrained by sum rules.*® In this work, we use a
semiphenomenological interpolation formula given in Ref.
46

q
0 _ .
g+ 8o(1 = xp/xs) ™ ks

Here, (gup)~2xp is the Pauli susceptibility (uy the Bohr
magneton and xp>0), xs=|x,(0)| is the renormalized value
of the spin susceptibility at ¢=0, K2=kFrS\E is the 2D
Thomas-Fermi wave vector, and g, is the pair-correlation
function at r=0, describing the probability of finding two
electrons (of opposite spins) at the same position in the elec-
tron gas. This phenomenological form for G_ has been modi-
fied from the one originally proposed by Hubbard®® in order
to satisfy exactly the compressibility sum rule.*®>7 The main
weakness of this approach is the arbitrariness of the chosen
form for G_. For noninteracting electrons, xp/xs=1. An ap-
proximate form for g,, giving a good agreement with quan-
tum Monte Carlo (QMC) calculations, has been proposed
recently by Gori-Giorgi et al. and reads®

G(g) =g (29)

go(ry) = (1 +Ar, + Br? + Cr?)e_D’S/Z. (30)

The parameters A=0.088, B=0.258, C=0.00037, and D
=1.46 are fitting parameters reproducing QMC results for g,
in a 2DEG.*® This approximation yields

q+ 8ok

for g <2qp, (31)
q+gory(a=1) !

X;(Q) =~-N e
where a= xg/(xs— xp) can be regarded as a Fermi liquid pa-
rameter. The low-g semiphenomenological approximation

for the electron spin susceptibility given in Eq. (31) results in

dx(q) . .
4 >0, Vg, in contrast to the lowest order perturbative

calculations.?®%0

Note that a direct estimate of G_(g) by recent QMC in a
2DEG gives an almost linear in g behavior up to rather large
values of g =2k, followed by a more complex nonmono-
tonic behavior around 2kg, and finally diverges in the large-
g 1imit. #6360 This large-¢g limit is not reproduced by Eq.
(29). This is not a serious drawback since most quantities of
interest are dominated by the low-¢g regime.

However, the scale q*= goka(a—1) decreases exponen-
tially with r; according to Eq. (30). This would imply an
almost constant behavior for G_(g), except at low g. When
we compare this behavior with available QMC data,**> we
find that there is a manifest contradiction. Therefore, this
raises some doubt about the presence of g, (a short distance
quantity) in Eq. (29).
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2. Modified local field factor approximation

If we instead replace g, in Eq. (29) by a parameter g,
such that glxz(a—1):g1rS\J’3(a—1)kF> 2kp, we have
checked that the QMC data for G_(g) are much better repro-
duced for ¢’s up to 2k, than by the expression given in Eq.
(29). In such a modified local field factor approximation
(MLFFA), g, is approximately given by

g~ — —Q<§—1), (32)
Xp

with {; as some numerical constant of order 1.

We should mention that some other more complicated
analytical fits of the QMC data have been obtained in Ref.
61. Nevertheless, we note that the fits used in that paper lead
to Sx,(g) ~¢* for two-dimensions, which is in contradiction
with all previous approximations. It seems desirable to test
Eq. (32) with more detailed QMC calculations.

C. Comparison of the various approximation schemes

If we summarize the various approximation schemes pre-
sented in the previous sections, which are perturbative or
semiphenomenological, we can clearly ascertain that Sy,(g)
xq for g<<qp. Nevertheless, the sign of the proportionality
constant depends on the approximation scheme we used.

Lowest order perturbation theory in the interaction
strength leads to dy,(¢q)/dg<0 at low ¢.>°3° However,
within the RPTA, renormalization effects in the Cooper
channel®*# are important and change the picture given by
lowest order perturbation theory. In this latter case, the RPTA
yields an opposite sign for dx,(q)/dg below some wave vec-
tor go. The LFFA we used implies that dx,(q)/dq>0 for all
g and, therefore, a monotonic behavior (not shown in Fig. 1),
whereas the RPTA leads to a nonmonotonic behavior (see
Fig. 1). Establishing a microscopic connection between these
two different approaches is obviously a rather difficult and
open issue.

The LFFA is a semiphenomenological approximation in
which an analytical expression for the local field factor
G_(q) is “guessed” with the constraints that the asymptotic
behavior should reproduce some known results inferred from
exact sum rules. The unknown parameters of G_(g) are fixed
from a fit to the QMC data.®' One may wonder whether one
can extract some information about the possible shapes of
x(q) directly from the original QMC data. The QMC data
shows a rather complicated structure with two extrema for
G_(g) around 2kg [see Ref. 59 or Ref. 46 (p. 244)]. Though
it might be tempting to relate the double-extremum structure
obtained by the RPTA to the QMC results, it turns out to be
impossible to extract the behavior of x,(g) from available
QMC data for G_(g). New QMC calculations directly com-
puting x,(g) instead of G_(g) are thus highly desirable.%?

Finally, we have seen that the low ¢ dependence of Sy,(q)
mimics the temperature dependence of Sxy,(7), which is in
agreement with the experiment by Prus et al. at low T.%
These experimental features may provide another, though in-
direct, consistency check of the RPTA.
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IV. MAGNETIC PROPERTIES OF THE NUCLEAR SPINS

We assume in this section that some nuclear spin ordering
actually takes place at low enough temperature and analyze
how this ordering is destroyed when the temperature is
raised.

A. Mean field approximation

Since the interaction between nuclear spins is of RKKY
type, the interaction is ferromagnetic at short distances d
<k;! [the large ¢ behavior of x,(¢) is only weakly modified
by e-e interactions]. Furthermore, many mean field calcula-
tions performed for the 3D Kondo lattice at low electron
density (neglecting e-e interactions though) predict a ferro-
magnetic ordering.>*%* Therefore, assuming a low tempera-
ture ferromagnetic ordering of the nuclear spins seems a rea-
sonable assumption.

We first recall the mean field results for completeness.
The Weiss mean field theory gives a Curie temperature,

20

w1+ 1) A?
Ic = 3k, 4nSXL(q—0), (33)
where 7 is the nuclear spin value.

In two dimensions, this mean field theory yields for T}g Fa
dependence on the ratio n,/n,. For a metal with about one
conduction electron per nuclear spin, the ratio n,/n;~ 1, and
we recover the result derived more than 60 years ago by
Frohlich and Nabarro for a 3D bulk metal.?? For a 2D metal,
the Weiss mean field theory then gives kgTo=I(1
+1)A2/ 12E. For a 2D semiconductor, however, the smaller
Fermi energy is compensated by the smaller ratio n,/ng<<1.
With typical values for GaAs heterostructures, /=3/2, A
~90 eV, and a~2 A, we estimate 7.~ 1 uK, which is
very low. (For such low T¢’s, ignoring nuclear dipole-dipole
interactions from the start would not be legitimate.) How-
ever, this estimate is just based on the simplest mean field
theory and, moreover, does not include the effect of e-e in-
teractions. It still leads to a finite 7~ under which the nuclear
spins order ferromagnetically.

B. Spin wave analysis around a ferromagnetic ground state

We shall now go beyond the above mean field approxi-
mation and perform a spin wave analysis. The collective
low-energy excitations in a ferromagnet are then given by
spin waves (magnon excitations).

1. Magnetization and Curie temperature of the nuclear spins

From the standard spin wave analysis,®> the dispersion
relation of the spin waves in the ferromagnet simply reads

2
0, =10y =1 =@l - O (4)

where J, is the Fourier transform of J, defined in Eq. (6).
At this stage, we already see that the stability of the fer-
romagnetic ground state demands that Sy,(q)=x,(¢)—x,(0)
>0. We can therefore conclude that the second order calcu-
lation implies that the ferromagnetic ground state is always
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unstable.’® On the other hand, the renormalized perturbation
theory approximation developed in Sec. IIT A 2 shows that it
is necessary to go beyond the lowest order perturbation
theory.

When renormalization effects are not important in the
RPTA, the lowest order perturbative results are recovered,
and the ferromagnetic ground state seems unstable (though
renormalization effects in all channels must be carefully
taken into account as described in Ref. 34). When renormal-
ization effects in the Cooper channel are important, we ex-
pect the two possible shapes denoted by (a) and (b) for the
static spin susceptibility x,(¢g) at T=0 (see Fig. 1). If the case
(b) is favored, then there exists a value of g at which w,
<0, signaling an instability of the ferromagnetic ground
state. From this perspective, cases (b) and (c) are similar.
Another ground state must then be assumed, and a subse-
quent analysis is required. This will be detailed in Sec. IV D.

On the other hand, if the shape of the susceptibility de-
noted by (a) is favored, the ferromagnetic assumption is self-
consistent. The RPTA predicts that there exists a temperature
T, above which dy,/dq <0 at low g. This implies that there
exists another temperature 7 < T, at which the minimum in
q; touches the horizontal axis, signaling an instability. If the
Curie temperature 7 is larger than T, then there exists a
temperature regime (typically for 7>T,) where the ferro-
magnetic ground state becomes unstable, and a different or-
dering may be favored. This case will be analyzed in Sec.
IV D. On the other hand, if the Curie temperature T, is
smaller than 7, the ferromagnetic ground state is self-
consistent below T.%% Such a scenario is in accordance with
the one obtained from LFFA. Let us therefore analyze this
latter case.

The magnetization m per site for a ferromagnet at finite 7
is defined by

, 35
N ePog— | (35)

1 1 1
m(T)=1-—Xn,=1-—2,
Nq q

where n, is the magnon occupation number and the summa-
tion is over the first Brillouin zone of nuclear spins. In the
continuum limit, this becomes

dq 1
2m)?eP—1"

m(T)=1-d* (36)
We define the Curie temperature T as the temperature at
which the magnetic order is destroyed by those spin waves.
This procedure is equivalent to the decoupling scheme of
Bogolyubov and Tyablikov.®® Another way of determining
the Curie temperature is to analyze at which temperature 7~
the spin wave analysis breaks down. The Curie temperature
T may then be defined by m(T)=0, which can be written

as
_a> [ dq 1

- 7 (277)2 e‘”q/kBTC -1

(37)

For noninteracting electrons in two dimensions, x,(q)
—x,(0)=0 for g <2kp,* where kj is the Fermi wave vector.
The spin wave analysis, therefore, gives T-=0. This is in
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agreement with a recent conjecture extending the Mermin-
Wagner theorem?® for RKKY interactions to a noninteracting
2D system.’* For interacting electrons, however, the long-
range decay of the RKKY interactions can be altered sub-
stantially, and no conclusion can be drawn from the Mermin-
Wagner theorem or its extensions.

Let us now include electron-electron interactions (ob-
tained by either the RPTA or the LFFA). All approximations
imply that the magnon dispersion is linear in g at low ¢, i.e.,
that w,~cq, where

A? > x,(q)
=g At
4 dq

c=1 (38)

q—0

can be regarded as the spin wave velocity.®” Such linear spin
wave behavior is usually associated with antiferromagnets,
while one would expect a quadratic dispersion for ferromag-
netically ordered states like those considered here. This
somewhat unexpected linear dispersion comes purely from
electron-electron interactions.

The perturbative calculations or their extensions to in-
clude the Cooper pair instability allow us to extract only the
low g asymptotic behavior of Sy,(¢). Monte Carlo results,
however, seem to indicate that the local field factor G_(g) is
almost linear in ¢ up to ¢~ O(2ky).*® We will therefore as-
sume that w,~cq for ¢ < q ~ O(kp).

This implies that for 7<<T, where

T = cq*/kB, (39)

the integral determining m in Eq. (36) is entirely dominated
by the linear dispersion behavior. Since fast modes corre-
sponding to g>¢_ are exponentially suppressed, we can eas-
ily compute it, assuming o, linear in g for the whole g range
(extending the upper integration limit to infinity). We obtain

m(T)=1[1-(TIT,)*] for T<T, (40)

o2 [3_AT 31 ox(g)
€ kga N B 2kp N mng  dq
is the Curie temperature. Note that with these estimates, one
has

where

(41)

qﬁo

* %

T

et (42)
Tc 2V3lm

Such a definition of T has been obtained assuming w,
=~cq for all ¢g. This approximation has two major aspects:
First, it regularizes naturally the integral in Eq. (37) in the
UV limit. Second, only the low-energy dependence of w,, is
taken into account, which is consistent with a spin wave
approximation.

2. Alternative UV regularization schemes

In the previous section, we have assumed that w,~ cq for
all g. On the other hand, one can assume that we know
explicitly w, for all ¢ in the first Brillouin zone, i.e., for g
<r/a despite only the asymptotic limits of Sy,(¢) (and
therefore of w,) are well established. At large ¢, we expect
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electron-electron interactions to play a minor role and the
electron spin susceptibility to be well approximated by its
noninteracting value, which decreases as 1/¢° [see Eq. (8)].
This implies that Sy,(¢) =—x,(0)= s at large ¢ and that the
integral in Eq. (36) or (37) are actually diverging when a
— 0. If we adopt such a procedure, the integral in Eq. (37) is
fully dominated by the short-distance modes, i.e., by the UV
cutoff (and therefore independent of any e-e interactions).
Such a regularization scheme is not very satisfying and, fur-
thermore, even inconsistent for a spin-wave approximation,
which relies on the long-ranged modes. Note that the 7 we
obtain with such procedure is similar (up to a prefactor of
order unity) to the Curie temperature obtained within the
mean field theory in Eq. (33).

Another regularization scheme consists in cutting off the
integral in Eq. (37) to ¢ <2{pkp, with {5 as a constant larger
than 1. This can be justified by integrating out fast modes
directly at the Hamiltonian level in Eq. (3) since x(q) de-
creases as 1/¢> for ¢> kg. Such a reasoning is equivalent in
real space to a decimation procedure in which a square
plaquette containing ({paky)™' X ({raky)~™" nuclear spins is
replaced by another plaquette with a single average spin.
Since at short distance, the RKKY interaction is mainly fer-
romagnetic, this is equivalent to a mean field procedure. The
long distance interaction is not substantially modified. The
main effect of this integration over fast modes is that the UV
cutoff in Eq. (37) is now of order 2k, instead of 7/a. Al-
though such a procedure does not allow for an exact calcu-
lation of T¢ since w, is not known around 2k, this consid-
erably boosts the Curie temperature by orders of magnitudes
compared to the previous regularization scheme and in the
same range as the Curie temperature determined from Eg.
41).

In the following, we will therefore use Eq. (41) as our
definition of T~. This has the advantage of providing us with
a simple closed formula. Furthermore, such a T is consistent
with the long-range approximation for spin waves.

3. Numerical estimate of the Curie temperature

Equation (41) gives us an estimate of the Curie tempera-
ture as a function of the derivative of the electron spin sus-
ceptibility. We have computed these quantities in Sec. III for
various approximate schemes. We are therefore now ready to
give estimates for the Curie temperature 7. Let us start with
the RPTA. Assuming I'.~ O(1) in Eq. (26), we obtain a Cu-
rie temperature 7-~20 pK for typical GaAs 2DEG param-
eters with r,~ 1. Setting ¢ ~ 2k in Eq. (42) and using the
same parameters, one obtains T ~ T-/50.

At larger ry, T is enhanced for two reasons: First, k;l
increases linearly with r; second, the value of the spin sus-
ceptibility at g=0, xs=|x,(0)|, which is essentially the Pauli
susceptibility at small r, increases linearly with r..*® An ap-
proximate value of yg can be extracted from QMC
calculations.*® One obtains, for example, T-~0.3 mK for
ry=5 and T~ 0.7 mK for »,=8. One may even obtain larger
values of T¢ in the millikelvin range for larger r, since T¢
increases quadratically with r;. Furthermore, when UN, is no
longer negligible compared to 1, T (T") is even further en-
hanced by an additional factor of 1/(1-UN,)? [see Eq. (18)].
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Close to the ferromagnetic Stoner instability of the electron
system, reached when UN, ~ 1, the Curie temperature 7 for
the nuclear system is strongly enhanced as could have been
anticipated.

On the other hand, if we use the local field factor approxi-
mations developed in Sec. III B, we can determine 7 by
inserting x,(¢q) obtained from the LFFA into Eq. (41),

1A 31 A

2k N 7 (a-1)2gV(a)’ (43)

where g;=g, [Eq. (30)] or g;=g; [Eq. (32)]. The energy scale
(a—1)?g;V(a) can be interpreted as a renormalized screened
potential due to collective interaction effects that are incor-
porated in the LFFA.

If we use g;,=g,, the LFFA gives an exponential enhance-
ment of T~ with the increasing interaction parameter r,. Yet,
as we have discussed in Sec. III B, this form for the local
field factor G_ cannot really be trusted at large r,>1 when
compared to QMC data. If we use the MLFFA instead, which
seems to be in better agreement with QMC data, then g;
=g, and we obtain 7-~0.4 mK for r,~5 and T-~1 mK
for r;,~8. These values are consistent with the ones found
using renormalized perturbation theory.

Note that the ratio A/(a—1)?g,V(a) can be regarded as
the small parameter of our theory. For some large value of r,,
the dimensionless parameter A/(a—1)?¢V(a) may approach
unity, and the truncation of the Schrieffer-Wolff transforma-
tion at the lowest order becomes unjustified.

C. Self-consistent calculation of the Curie temperature

If we assume a ferromagnetic ordering of the nuclear
spins, this generates some rather large nuclear Overhauser
magnetic field By(m)~O(1 T) in a GaAs 2DEG for m=<1I
that we have neglected before. Therefore, the spin degen-
eracy of the conduction electrons will be lifted by the Zee-
man energy gugB.s, which should have some effects on the
determination of T, too. A self-consistent procedure includ-
ing feedback effects is therefore required. This is the purpose
of this section.

The electron spin susceptibility is no longer isotropic. In
the following, we will assume that it is still diagonal but has
now a longitudinal component ): (in the direction of the
magnetic field produced by the nuclear spins) and a trans-
verse component XSL. Taking into account such an anisotropy,
our SW transformation is still valid, and we obtain an effec-
tive spin anisotropic 2D long-ranged Hamiltonian, which re-
places Eq. (5),

1
[r—r']

1 4
-> VAR

Hepp=— 5

(R, + LT |, (44)

rr’
where, in ¢ space, JfI/ L=—(A%/4n,)x?*(g). The dispersion
relation for magnons now becomes
w,=10J5-7,). (45)

and therefore generically acquires a gap for B.;# 0. Let us
denote by A(B.yg)=A(m) such a gap. The expansion of the
magnon dispersion for small g leads to
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aIr
w,=1A+1q —L
dq

where we have assumed a linear in g behavior for )(Sl (g) and

=IA+c'q, (46)
gq=0

defined c’=I%Jq"-(q:0). We assume ferromagnetic order, and
so ¢'>0. In the following, we develop a simple approach of
the Landau type. Equation (37), which determines the Curie
temperature, is still valid and now reads

l=— 47

f (2m)? eﬁ1A+Bc lal_1° “7)
where B=1/kyT. As before, we assume the linear dispersion
to be valid for all ¢, which naturally regularizes the integral
in the UV limit. The latter integral equation can be rewritten
in a more compact form as

Cl2

1
=BIA[m(T)]
2771(3 /)2L12(e ) (48)

where Li, is the dilogarithm function. Let us first focus on
the magnetization m. From Eq. (36), we have

612

2(/3 ')?

When T— T, m— 0 and, hence, A(m)— 0. Let us denote by
T2 the Curie temperature obtained from Eq. (37) by neglect-
ing B We assume that the temperature is below but close
to Tc. We can therefore expand the gap as A=A'm+- -, with
A= %(m:O). The dilogarithm around A=0 then expands to

72 \3
(BIA') e (BIA') 3
4 72
+ LRI (50)

m(T) = ——— Liy(e PIAmD), (49)

Liy(e A1) = % +g(BIA"'m) -

where g(x)=x(Inx—1). Introducing the dimensionless pa-
rameters r=T/T-—1, t0=T/T%— 1, and b=IA"/kgT, the self-
consistent equation [Eq. (49)] for m(T) becomes

3b? b’
—In(bm)] + —m? 3

LT
(51)

-
20

m(t) =- Zto +

This equation can be easily solved numerically. Note that by
integrating this equation with respect to m, one obtains the
Landau functional.

In Fig. 2, we plotted the magnetization as a function of 7,
for various values of the dimensionless parameters b. Two
interesting features can be noticed: First, 7 increases com-
pared to 7% by increasing b. Second, the magnetization rises
sharply as T is lowered through T, which is reminiscent of a
first order phase transition for a system in the thermody-
namic limit. This effect becomes pronounced at values of b
~0.15.

Let us now estimate the value of b in our system. To this
end, we need to estimate A’, which can be regarded as the
susceptibility of the susceptibility. Since the limits 7— 0 and
B.s— 0 for the susceptibility x,(T,B.s) do not commute,*
little care is required. When the nuclear spins in the GaAs
heterostructure are polarized, they generate a rather large ef-
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FIG. 2. (Color online) Magnetization as a function of f,
=(T/ I‘é)—l for various values of the dimensionless parameter b.
For small values of b, the behavior described by Eq. (40) is
recovered.

fective magnetic field B, which gives an electronic Zeeman
energy scale A(m=1) of the order IA ~O(1 K). This scale is
much larger than the typical Curie temperature we estimated
before. In the ferromagnetic phase, we are therefore in a
regime in which A(m=1)> kT, where T is the temperature.
In this regime, one can use Ref. 34 to estimate A’
~ A3/ EX(aky)’T?, where T, is the renormalized scattering
amplitude defined in Eq. (24). Using Eq. (37) for the Curie
temperature T, we can estimate b~ (akp)(A/Ep)<<1. Our
problem thus corresponds to a regime in which feedback
effects are negligible, which justifies the previous isotropic
approximation for the electron spin susceptibility.

D. Spin wave analysis around a helical ground state

We have assumed so far that the ground state is ferromag-
netic. This assumption obviously depends on the sign of
Oxs(q). We have seen that the RPTA predicts two possible
scenarios: Either Sy,(¢) <0 in some range of ¢ [case (b) in
Fig. 1] or 8x,(q) becomes negative above some temperature
T,. A positive sign, on the other hand, is always obtained
from LFFA. In contrast, second order perturbation theory
gives a negative sign for Sy,(g), independent of the magni-
tude of g. If we assume that there is a temperature range
where Syx,(g) <0, this clearly implies that the assumption of
ferromagnetic order is invalid since the magnon spectrum
has w,<<0. This corresponds to the situations (b) or (c) in
Fig. 1, which may depend on the Fermi liquid parameters or
arise when T exceeds some temperature 7.

1. A new ground state

A different ground state for the nuclear spins thus has to
be assumed. If the minimum of JSy,(q) is reached at some
finite wave vector g; ~ kp, a reasonable ground state of such
a system could be an incommensurable helical state, or a
spiral state, with a wavelength of the helix of the order of
N =2m/q,.

We stress that on the scale of the lattice spacing, the
RKKY interaction remains ferromagnetic and the neighbor-

045108-11



SIMON, BRAUNECKER, AND LOSS

ing nuclear spins are still ferromagnetically aligned. On the
scale of the Fermi wavelength, however, an opposite spin
alignment is favored. A gain in energy may be obtained by a
slow variation of the nuclear spin alignment, i.e., by helical
order. If such a nuclear spin arrangement is reached for some
temperature range, it implies that the total magnetization
vanishes over distances much longer than Aj.

We assume that the ground state of the nuclear spins is
described by a local magnetization m;=(I,) that is confined
to the spin (x,y) plane and that rotates in spin space around
the z direction. A full rotation is described by the wave vec-
tor q.

These m; play the role of the order parameter in the sys-
tem. In order to compare with a ferromagnet, we can char-
acterize the order by locally rotating the m; so that they all
map onto the same m,,

cos(r;-qp) sin(r;-q) 0
m;=Rm,=| —sin(r;- q;) cos(r;-q;) 0 [m,, (52)
0 0 1

where my=m(r;=0) is the magnetization at site r;=0. Note
that m,, has the same interpretation as the average magneti-
zation of a ferromagnet.

The helical ground state breaks the translational as well as
the rotational symmetry of the Hamiltonian in Eq. (3). In
particular, the ground state is degenerate with respect to a
change of the direction of q; in the 2DEG plane. With the
choice of a specific direction q;, this symmetry is broken.
There exists, therefore, a Goldstone mode that tends to re-
store this rotational symmetry by inducing changes on the
direction of q;. Obviously, such a mode would destroy the
assumed order immediately. Realistically, however, the spe-
cific helical state can be pinned by the system, such as by a
disorder lattice configuration or by some Dzyaloshinskii-
Moryia interactions, and the Goldstone mode becomes
massive.%® In the following, we will assume that this is the
case. Concretely, this means that excitations with small q in
the perpendicular direction of q; are strongly suppressed.

2. Spin wave analysis

Our starting point is the effective spin Hamiltonian of Eq.
(5) with an exchange interaction matrix J“’B JP(|r;-r; |) de—
fined in Eq. (6) that can be off-diagonal in general Slnce J
is proportional to the spin susceptibility, as can be seen from
Eq. (A6), we can assume, however, that Jii=J}7 and that
J“ﬁ = Jﬁ“ for @# B. These assumptions are related to the
conservatlon of the total spin of the electron system.®

A convenient way to perform the spin wave analysis is to
first perform a local rotation of each nuclear spin /; as in Eq.
(52) such that they all become parallel to each other like in a
ferromagnet. We thus define a local (right handed) set of
axes described by the unit vectors e e, and e}, with e;
being parallel to m,.”° In principle, e and e can be chosen
arbitrarily. It is convenient though to choose e parallel to the
1 Pe2 4 Ped

spin rotation axis z. Then, we can write I,=1'e +le;+1I7e;.

These new components 7? are connected to the original com-
through the as (I, 2, 1)7T

matrices R; I,

ponents [ ;
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—RT(P,P I5)T, where T denotes here the transposition. Let
J be the 3 X 3 matrix associated with J“B, then, the Hamil-
tonlan for the nuclear spins can be wntten as

ol
I

Hepp=— 2(1,,,,,>R,-Jinj E | (53)

St

In this new basis, the spin-wave analysis is analogous to the

ferromagnetic case and is rather standard (see, e.g., Ref. 71).

The ground state energy of the helimagnet then becomes

PN ..

Ey=- 7"‘11 . (54)

Let us compare Eq. (54) to the ground state energy of a

ferromagnet. If all spins are aligned along the x direction, the
ground state energy of the ferromagnet is

’N
EM=- 21“ - i (55)

The energy of the helical state is thus lower than that of the
ferromagnet if J’;l‘> Z’;O. Furthermore, the helical state has
the lowest energy at the wave vector q;, where J;'=J" has
its maximum.

The low energy excitations above the ground state can
also be obtained in a straightforward manner from Eq. (53).
We find the following two branches of the spin wave spec-
trum:

1
@y’ = 505~ (56)
Wy = (J”l‘ ~J5). (57)

Clearly, o V=0 at q=0. On the other hand, we see that the
helical ground state can only be stable if 0?=0, which
means that Jj must not exceed J” in the vicinity of q=0. If

JZ“ Jxx this is indeed the case. The second branch, w(z) then
has a gap

3. Effect of gapless modes

We see that there is a gapless mode g in the system,
given by Eq. (56). If q is such that |q,+q|=g;, then o,
remains strictly zero. This is the aforementioned Goldstone
mode. Such fluctuations, therefore, are assumed to acquire a
mass, associated with an energy scale Ag. In the longitudinal
direction, however, where q is parallel to q;, wg grows for
lq;+q|> g, and |q,+q| <g, proportionally to the increase of
Xs(|q;+q|) with respect to its minimum.

The minima of the spin wave spectrum are pushed to
finite momenta ¢, notably to the minimum of the spin sus-
ceptibility x,(g) at finite g=¢,. Provided that y,(g) remains
analytic around the minimum at ¢, it no longer grows lin-
early but, in general, as (g—q,)%. The system, therefore, can
no longer benefit from a linear y,(g) to stabilize the ferro-
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magnetic order, and different, nonuniversal, energy and
length scales will affect the Curie temperature T (see be-
low).

We have seen above that the quantity my=|mg| can be
used as the order parameter of the helical state. Every spin
wave reduces my, and we can thus use again Eq. (36) in order
to express how the average local magnetization is reduced by
the spin excitations,

dq 1
Qm)?eP—-1"

m0=1—a2 (58)

For ¢—0, the integrand becomes singular as 1/¢>.”> The
singularity cannot be compensated by the factor g of the
spherical integration measure gdg, as in the previously dis-
cussed ferromagnetic case. This is the same situation that is
met when calculating spin wave excitations for systems
without long-ranged interactions. There, the singularity is di-
rectly linked to the Mermin-Wagner theorem.?® In the present
case, however, the small g values are cut off at some finite
inverse length scale 7/ L, associated with the energy A, the
infrared cutoff frequency introduced in Sec. III.

The scale L lifts the singularity in the integral [Eq. (58)]
by cutting off the momentum at g=~ /L, and so by effec-
tively opening a gap for the excitations. The spin system can
maintain a quasiorder over the length L. An additional reduc-
tion of the singularity also arises from the fact that the sys-
tem is not truly 2D but a layer with a finite width w,, con-
taining about 50-100 planes of nuclear spins (see also the
Appendix). This length scale, however, must be compared
with the typically much longer wavelengths of the spin
waves, and thus can only account for a partial regularization.
The singularity is dominated by the minimal curvature of wg
in all directions of q. In the present case, there are two main
directions, the longitudinal one parallel to q;, where w,
=Cq’, with C= =3J,/ 9q*| 4~y » and the transverse one per-
pendicular to q;, where the curvature is imposed by A.. For
the stability of the ground state, we must assume that the
pinning strength A is large compared to the energies im-
posed by the J“B The singularity in Eq. (58) is thus domi-
nated by 1/ BCq

Let us assume L~ 10 wm. Cutting off the upper integra-
tion limit by kg, the singular part of Eq. (58) becomes

kr dq 1
J:T/L Chq = ag In(kgpL/ 7). (59)

The logarithm yields a factor exceeding 1. The helical order
cannot be stable if the expression in Eq. (59) becomes larger
than 1. This allows us to define a temperature

c
kgTC = ———| 60
B T 18 In(kpLi ) (60)

above which the gapless mode definitely destroys the helical
order.

We see that much of the stability depends on the value
of C, which means on the curvature of y,(¢g) around its
minimum at ¢,. We can very roughly estimate C/a’
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~Jy ! (akg)?* and see that this temperature 7¢ can actually be
quite high. Let us now write the integral in Eq. (58) in the
form

dq 1 In(kpL/ ) dq 1
2ar)2 P = + 2 77)2 B :
(2m)~ePra—1 BC gk (27)7 PP =1

(61)

Let us now further introduce a temperature T , similar to
the temperature T for the ferromagnetic case, below which
the integral determining m, is entirely dominated by the qua-
dratic dlspers1on behavior. This means that we assume that
wq= Cg? (in the direction parallel to q;) up to a g
<q1,kF We can set

ek

T =C(g"™") k. (62)

For T, <T<T"", therefore, Eq. (61) is controlled entirely by
the first logarithmic part. We thus obtain

In(kpL/
g ~ 1 — 2 KL

kpT=1(1-TIT%), (63)
valid for 7<T""

The temperature T can be seen as a generalization of T
for the helical case. It differs from the ferromagnetic case
through its dependence on external, nonuniversal cutoff
scales. This loss of universality is an essential difference
compared to the previously studied ferromagnetic order. This
also indicates that the helical order is much more fragile with
respect to external conditions than the ferromagnetic order.

At higher temperatures, the formation of defects and mag-
netic domains will further tend to destabilize the order as
well. It is therefore possible that the helical order is de-
stroyed well below T¢.

V. CONCLUSION AND DISCUSSION

Summary. In this paper, we have examined the interplay
between an interacting electron liquid in two dimensions
with magnetic order in a lattice of nuclear spins. We have
based our investigation on a Kondo lattice model, in which
the electrons couple weakly to the nuclear spins through the
hyperfine interactions. In this way, an effective coupling of
the RKKY type is induced between the nuclear spins which,
as obtained through a Schrieffer-Wolff transformation, is ex-
pressed in terms of the static electron spin susceptibility
X5(q)-

Electron-electron interactions in two dimensions can sub-
stantially modify the shape of x,(¢g) and therefore profoundly
affect the magnetic properties of the nuclear spin system. A
magnetic order can arise because the conditions for the
Mermin-Wagner theorem are not met due to the long-range
character of y,(r). Much depends thus on the precise shape
of x,(¢). Based on a renormalized perturbation theory, we
argued that for short-ranged interactions, y,(g) should have
the forms sketched in Fig. 1. When renormalization of the
scattering amplitudes is important, y,(¢) has two extrema at
values ¢qg,q; ~ kp, which lead to the two generic situations
labeled by (a) and (b) in Fig. 1. If renormalization effects are
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unimportant, this leads to form (c), as sketched in Fig. 1. The
distinction between (a), (b), and (c) is nonuniversal and, pre-
sumably, depends on the sample disorder, the interactions,
and the temperature.

For long-ranged Coulomb interactions, on the other hand,
a calculation based on a local field factor approximation pro-
duces a monotonic increase of x,(q) (not sketched in Fig. 1).

Such a monotonic increase or case (a) stabilizes a nuclear
ferromagnet. In case (b), the ferromagnetic order has an in-
stability at the wave vector g; ~ ky, which corresponds to the
absolute minimum of y,(q), but ferromagnetic coupling is
maintained at short distances (as compared to the Fermi
wavelength). A similar behavior emerges also for case (c).
We argued that the nuclear ground state then has a quasi-
order, which is (nearly) ferromagnetic on short distances but
rotates the local magnetization on a scale of 1/¢,, thus pro-
viding a helical order.

Experimental implications. The transition temperature 7
describes the temperature above which the magnetic order
breaks down. While the mean field approximation predicts a
very low transition temperature of the order of ~1 uK, we
have seen that electron-electron interactions can considerably
increase the value of 7. From our various approximation
schemes we obtain a T in the millikelvin range for both
short-ranged and long-ranged interactions for r,=5-10 (see
Sec. IV B 3).

If temperature is decreased below T, the nuclear spins
order and generate an effective magnetic field B, which can
be very large in GaAs 2DEGs, this being in contrast to Si
MOSEFETs, which have a much smaller Overhauser field.
This internal magnetic field has important consequences for
the thermodynamic behavior of the electron spin susceptibil-
ity, which can be derived from the nonanalytic dependence
of x,(T,B.) on temperature and magnetic field following
Ref. 34 (the limits T— 0 and B.;— 0 do not commute). In a
Si MOSFET 2DEG, we expect gugB.i<<kplc; therefore, the
calculated and observed® linear in T behavior of y,(T) is
also valid below 7.. However, in GaAs 2DEGs, one has
clearly gupB.+>kgTc, and one may therefore expect
()= x,(0)]=T above T¢ and [x(T)-x,(0)]ocmo[1
—(T/T¢)?*] below T¢, in contrast to Si MOSFETs. This im-
plies an upturn of x,(7) around T=T, in a GaAs 2DEG.

Open questions. There remain many open questions.
Mainly, a detailed study of y,(¢) at values g~2ky could
clarify the scenarios qualitatively sketched in Fig. 1. Monte
Carlo simulations and experiments may provide further in-
sights here. It would be desirable to establish a general mag-
netic phase diagram for the nuclear spins as a function of r,
and T. Possible new phases such as a nuclear spin glass
phase are likely due to the complexity and richness of the
problem. Finally, disorder may play an important role by
providing a further cutoff length, and the interplay with
electron-electron interactions requires a separate investiga-
tion.
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APPENDIX: DERIVATION OF THE EFFECTIVE
MAGNETIC LOW-ENERGY HAMILTONIAN

1. Effective Hamiltonian

We start from the general Kondo lattice Hamiltonian in
Eq. (1) with H,,=0. Since A is a small energy scale in our
case, we can perform a Schrieffer-Wolff transformation in
order to eliminate terms linear in A, followed by “integrating
out” the electronic degrees of freedom. Keeping the lowest
order terms in A2 of the SW transformation, we are left with
an effective interaction Hamiltonian Hygy, that reads

1
HSW:HO_E[S’[S’HO]]' (Al)
S is defined by H,+[S,Hy]=0, which is solved as S=L;'H,,
where L is the Liouvillian superoperator.
Let us define

U= %[S’[S’HO]:L (A2)

which can be rewritten as U =%[L61Hn,Hn]. Using an inte-
gral representation for Ly'=—if;dte’ 0" one obtains

U=- %fo dte™"H,(1),H,], (A3)
(

)
where H,(t)=el0'H,=¢0'H 70! and 77— 0" ensures the
convergence of the time integration. Using the definition of
H, given in Eq. (2), we are left in g space with

iA? ”
U=- W E J dte_’”[lq : Sq(l),lqr . Sqr]
lqu’ 0

iA? *

__ —ntfyagB o B a BB qa

- > fo die™ {11 [S5(1),55,] + [16.1,155,S2(1)}.
q.q

(Ad)

Summation over Greek indices is implied. The first commu-
tator enters the definition of the susceptibility in Eq. (A6)
below. The second commutator can be straightforwardly
computed by going back to real space. We obtain [I“,Iqﬁ il
=ie“ﬁ713+q,, where €47 is the fully antisymmetric tensor.
We next take the equilibrium expectation value over elec-
tronic degrees of freedom only, denoted by (---). Further-
more, we assume translational invariance in the 2DEG,
which implies (00q/)=N(O4O_g) 8qsq 0» With N being the
number of sites in a 2D lattice. Since H, has time-reversal
symmetry, the term proportional to €¥¥”I” in Eq. (A4) drops
out. Together with the reduction to a 2D problem (discussed
below), this allows us to bring (U) to a much simpler form,

A2
(V)= on@ 2 IiXap DIy, (AS)

q

where n,=a"? is the 2D nuclear spin density. The quantity
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Xap(q, ) == ﬁ fo die™ " ([Sq(1), 5] (A6)

is the 2D electron spin susceptibility, which includes
electron-electron interactions.

2. Reduction to two dimensions

As already mentioned, the electron gas is not strictly 2D
but has a finite thickness, typically of the order of w,
~5 nm and therefore contains several layers of 2D nuclear
spin planes. Since the electron wave function is confined in
the third dimension (z direction), we can reduce the original
3D system to an effective 2D one. Let us suppose that a
lattice site is labeled by r;=(r;,z;), where r; is the planar
coordinate and z; the position in the perpendicular direction.
We consider N,~ 50 layers such that N=NXN..

If we assume that w, is sufficiently small so that the elec-
trons are confined in a single mode ¢(z) in the z direction, all
nuclear spins in a column along the z direction couple to the
same electron wave function. Fluctuations of the nuclear
spins along this direction are expected to be weak. In a
mean-field-like description, we may thus replace the column
by a single 2D nuclear spin as follows. Let us separate out
the perpendicular mode from the electron spin operator as

| ¢(Zi)|2

w

Si(ry.z) — Si(ry), (A7)

Z

with S;(r;) being a 2D electron spin operator. The mode
¢(z;) can then be used as an envelope function for the
nuclear spins,
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1
Ii(riH)=; J dz)| p(z) |1, (ry.2)). (A8)

z

Since w, is determined by w.=[dz|$(z)|*, these new opera-
tors I,(r;) satisfy the standard spin commutation relations.
The remaining Hamiltonian is now strictly 2D.

Alternatively, we can argue as follows. Since k;l >w,, we
can approximate |r;—r;|=[r;—r;| and therefore

N.

1 & 1

— 2 I - I = (?E [7(I‘i|,1i))faﬁ(|l'in—l’j|||)
2zpzj=1 VN,

z %

1

This amounts to replacing a single nuclear spin at position
(rj,z;) by an average nuclear spin %EEZjI.I-(rj”,zj). This is
fully consistent with the fact that the RKKY interaction is
almost constant and ferromagnetic in the z direction perpen-
dicular to the 2DEG (this is at least the case for the RKKY
interaction obtained by neglecting electron-electron interac-
tions, but we expect that the interactions do not modify sig-
nificantly the RKKY interactions in the z direction).

Our problem has now been reduced to a 2D system con-
sisting of N=N,/N, nuclear spins interacting with long-
ranged interactions. The effective nuclear spin Hamiltonian
H;=(U) is finally given by Eq. (3).
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